Propofol allows precise quantitative arterial spin labelling functional magnetic resonance imaging in the rat
نویسندگان
چکیده
Functional magnetic resonance imaging (fMRI) techniques highlight cerebral vascular responses which are coupled to changes in neural activation. However, two major difficulties arise when employing these techniques in animal studies. First is the disturbance of cerebral blood flow due to anaesthesia and second is the difficulty of precise reproducible quantitative measurements. These difficulties were surmounted in the current study by using propofol and quantitative arterial spin labelling (QASL) to measure relative cerebral blood volume of labelled water (rCBV(lw),) mean transit time (MTT) and capillary transit time (CTT). The ASL method was applied to measure the haemodynamic response in the primary somatosensory cortex following forepaw stimulation in the rat. Following stimulation an increase in signal intensity and rCBV(lw) was recorded, this was accompanied by a significant decrease in MTT (1.97+/-0.06s to 1.44+/-0.04s) and CTT (1.76+/-0.06s to 1.39+/-0.07s). Two animals were scanned repeatedly on two different experimental days. Stimulation in the first animal was applied to the same forepaw during the initial and repeat scan. In the second animal stimulation was applied to different forepaws on the first and second days. The control and activated ASL signal intensities, rCBVlw on both days were almost identical in both animals. The basal MTT and CTT during the second scan were also very similar to the values obtained during the first scan. The MTT recorded from the animal that underwent stimulation to the same paw during both scanning sessions was very similar on the first and second days. In conclusion, propofol induces little physiological disturbance and holds potential for longitudinal QASL fMRI studies.
منابع مشابه
The long and winding road to translation for imaging biomarker development: the case for arterial spin labelling (ASL)
Radiology is facing many challenges nowadays, and certainly needs to keep up with the fast pace of developments taking place in this field. This editorial aims at drawing the attention of the reader to the current establishment of quantitative imaging biomarkers, in particular through the efforts of the Quantitative Imaging Biomarker Alliance (QIBA) from the Radiological Society of North Americ...
متن کاملANALYTICAL STUDY OF EFFECT OF BILAYER INORGANIC AND ORGANIC COATING AROUND THE IRON OXIDE NANOPARTICLES ON MAGNETIC RESONANCE IMAGING CONTRAST
Background & Aims: In recent years, iron oxide nanoparticles have been used in contrast-enhanced magnetic resonance imaging for diagnosing a wide range of diseases. In order to provide biocompatibility and prevent the toxicity of the nanoparticles, using organic or inorganic coating around these nanoparticles is important for their application. The aim of this study is to investigate the effect...
متن کاملApplication of Arterial Spin Labelling in the Assessment of Ocular Tissues
Arterial spin labelling (ASL) is a noninvasive magnetic resonance imaging (MRI) modality, capable of measuring blood perfusion without the use of a contrast agent. While ASL implementation for imaging the brain and monitoring cerebral blood flow has been reviewed in depth, the technique is yet to be widely used for ocular tissue imaging. The human retina is a very thin but highly stratified str...
متن کاملNoninvasive MRI measurement of CBF: evaluating an arterial spin labelling sequence with 99mTc-HMPAO CBF autoradiography in a rat stroke model.
Arterial spin labelling (ASL) is increasingly available for noninvasive cerebral blood flow (CBF) measurement in stroke research. Here, a pseudo-continuous ASL technique (pCASL) was evaluated against (99m)Tc-D, L-hexamethylpropyleneamine oxime ((99m)Tc-HMPAO) autoradiography in a rat stroke model. The (99m)Tc-HMPAO was injected (intravenously, 225 MBq) during pCASL acquisition. The pCASL and (9...
متن کاملArterial spin labeling blood flow MRI: its role in the early characterization of Alzheimer's disease.
Arterial spin labeling (ASL) enables the noninvasive, quantitative imaging of cerebral blood flow using standard magnetic resonance imaging (MRI) equipment. Because it requires no contrast injection, ASL can add resting functional information to MRI studies measuring atrophy and signs of ischemic injury. Key features of ASL technology that may affect studies in Alzheimer's disease are described...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 51 4 شماره
صفحات -
تاریخ انتشار 2010